Temperature Dependence of Poly(phenylsiloxane) Fluorescence.

2. Comparison of Poly(methylphenylsiloxane) with Copolymers of Methylphenylsiloxane and Dimethylsiloxane

Catalina Salom, I. Hernández-Fuentes, and Inés F. Piérola*

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain

Arturo Horta

Departamento de Química Física, Facultad de Ciencias, Universidad a Distancia (UNED), 28040 Madrid, Spain. Received July 13, 1988; Revised Manuscript Received October 7, 1988

ABSTRACT: Fluorescence spectra of high molecular weight poly(methylphenylsiloxane) and of oligomeric copolymers of methylphenylsiloxane with dimethylsiloxane were recorded as a function of temperature (5–60 °C), in cyclohexane dilute solution. The homopolymer and copolymers with large phenyl content present an isosbestic point between their excimer $(I_{\rm E})$ and monomer $(I_{\rm M})$ bands, which is attributed to excimer–monomer equilibrium in the excited state. The fluorescence ratio, when plotted as $\log (I_{\rm E}/I_{\rm M})$ versus 1/T, shows a simple linear variation, with positive or negative slope depending on the phenyl content of the copolymer. However, $\log I_{\rm E}$ or $\log I_{\rm M}$, when plotted separately versus 1/T, shows in all cases a more complex behavior, with two lines intercepting at a point which has been ascribed to a transition temperature, $T_{\rm t}$. At $T > T_{\rm t}$, the isobestic point disappears. The transition is attributed to the onset of a nonradiative mechanism involving a pair of neighboring chromophores. The high torsional and bending flexibility of the Si–O–Si structure is proposed as a factor determining the overall temperature variation of fluorescence in these siloxanes.

Introduction

In the last years, methods based in luminescence spectroscopy are being adopted (together with more traditional tools) for the study of polymers. Excimer emission is one of the more fruitful of such fluorescence-based techniques. Excimers are excited-state complexes formed by a couple of chromophores placed face to face at a short distance. Excimers have red-shifted emission with respect to "monomer" or single chromophore emission. The excimer-to-monomer intensity ratio $(I_{\rm E}/I_{\rm M})$, called the fluorescence ratio, depends on intrinsic and extrinsic characteristics of the system (solvent, temperature, polymer tacticity, molecular weight, etc.). 1

Temperature-dependent fluorescence measurements are particularly interesting in that, through steady-state experiments, they can yield information on coil dynamics. Two limits are recognized in the temperature dependence of $I_{\rm E}/I_{\rm M}$: $^{1.2}$ the high-temperature limit (HTL), in which the slope ($\Delta E_{\rm EM}$) of ln $(I_{\rm E}/I_{\rm M})$ versus 1/T is positive, and the low-temperature limit (LTL), in which the same slope is negative. Such typical behavior has been found for solutions of polymers $^{3-8}$ and bichromophoric model compounds, $^{9-13}$ whenever they were studied over a broad enough temperature range.

The interpretation in the LTL is that excimer formation is under kinetic control, and hence $\Delta E_{\rm EM}$ can be identified with the activation energy for excimer formation.¹ In the HTL, it is generally assumed (although severely criticized) that excimer formation is under thermodynamic control, and $\Delta E_{\rm EM}$ is associated with the excimer binding enthalpy.¹

In the LTL, isosbestic points have been reported for some cases of polymers^{3,7} and bichromophoric model compounds, ^{10,12} both in solution. According to the standard mechanism of Birks (Scheme I), that means that excimer dissociation is negligible and the dominant process is excimer formation. When temperature is raised, $I_{\rm M}$ decreases and $I_{\rm E}$ increases proportionally, giving rise to the isosbestic point. That is why isosbestic points, although appearing in the LTL, are associated with excited state equilibria. ^{12,14}

Isosbestic points have not been observed in the HTL for hydrocarbon polymers or dimeric compounds. This is not surprising, since in the HTL the rate constant for radiative plus nonradiative excimer decay ($k_{\rm E}$ in Schemes I–IV) is usually larger or about equal to the rate constant for excimer dissociation ($k_{\rm ME}$). Hence, the rate of excimer decay is already larger than the rate of excimer formation when the HTL is reached, and $I_{\rm E}/I_{\rm M}$ does not correspond to equilibrium in the excited state. (Under such circumstances, $\Delta E_{\rm EM}$ should not be identified with the excimer binding enthalpy, as is usually done.)

Isosbestic points for siloxanes have been reported previously by us² and by others¹⁵ in dimeric,² trimeric (cyclic and linear),¹⁵ and homopolymeric² phenylsiloxanes.

The behavior of these siloxanes in their isosbestics is different from that of the hydrocarbons. With siloxanes, $I_{\rm E}$ decreases and $I_{\rm M}$ increases proportionally as T is being raised (the opposite to what happens in the LTL isosbestics of hydrocarbons). We propose here that the isosbestics of these siloxanes belong to the HTL and that they reflect a real excited-state equilibrium and a real thermodynamic control of excimer population.

Besides analyzing the nature of the isosbestic, we also try to get information on the dynamics of these siloxane molecules, from the temperature dependence of $I_{\rm E}$ and $I_{\rm M}$. Fluorescence occurs in the nanosecond time scale, and it can therefore yield information on the dynamics of the fastest intramolecular motions: rotations around at least one skeleton bond, 16,17 side group rotation, 17 and cooperative backbone–side group motions, 18 etc.

We have reported before that phenylsiloxanes suffer a transition, at a given temperature, which is detected in the T variation of $I_{\rm E}$ and $I_{\rm M}$. We study here further such a transition and how it is affected by a change in chromophore concentration by using copolymers of different phenyl contents.

The systems which we study now are the homopolymer poly(methylphenylsiloxane) (PMPS) and copolymers of methylphenylsiloxane (MPS) with a photophysically inactive comonomer, dimethylsiloxane (DMS). They are studied in the temperature range 5–60 °C.

Experimental Section

The homopolymer PMPS has been fractionated and characterized by light scattering and GPC (Table I). Its tacticity has

Table I Characteristics of the Studied Samples: Molecular Weight (M) and Molar Fraction of MPS in the Copolymers (X_{MPS})

sample	M	$X_{ exttt{MPS}}^c$	
PMPS-3	4.2×10^{5a}	1.0	
PMPS-5	1.15×10^{5a}	1.0	
Co710	2.5×10^{3b}	0.663	
Co8241	4.2×10^{3b}	0.543	
Co8240	6.4×10^{3b}	0.095	

 $^{a}M_{w}$ by light scattering; $M_{w}/M_{n} = 1.76$ by GPC in THF. $^{b}M_{n}$ by vapor osmometry. Spectrophotometrically determined.

Table II Transition Temperature (T_t) and Total Activation Energy $(\Delta E_{\rm E})$, a at Temperatures above and below $T_{\rm t}$, for the Homopolymer PMPS, as a Function of Molecular Weight and Concentration (c), and for the Dimeric Model Compound DS, All in Cyclohexaneb

sample	c, M	T _t , °C	$\Delta E_{ m E}^{T < T_{ m t}}$	$\Delta E_{\mathrm{E}}^{T>T_{\mathrm{t}}}$
PMPS-3	7.0×10^{-2}	36	-1.40 ± 0.07	-2.7 ± 0.1
PMPS-5	5.0×10^{-3}	33	-1.6 ± 0.2	-3.1 ± 0.2
PMPS-5	2.1×10^{-3}	34	-1.59 ± 0.07	-3.5 ± 0.2
PMPS-5	4.1×10^{-4}	32	-1.64 ± 0.06	-3.5 ± 0.1
\mathbf{DS}	4.0×10^{-4}	27	-2.4 ± 0.1	-4.6 ± 0.1

^a $\Delta E_{\rm E}$ in kilocalories/mole. ^b $T_{\rm t}$ and $\Delta E_{\rm E}$ from log $I_{\rm E}$ versus 1/T

been previously reported.¹⁹ Fractions PMPS-3 and PMPS-5 have been selected for this work.

Three copolymers of MPS and DMS, which we call Co8240, Co8241, and Co710, have also been employed in this work.²⁰ Table I summarizes their characteristics.

Cyclohexane (Ch) of specific quality for fluorescence was purchased from Carlo Erba.

UV absorption spectra were recorded on a Shimadzu UV-240 spectrophotometer. Fluorescence spectra were run on a Perkin-Elmer LS-3 emission spectrophotometer. The maximum absorption occurs at 260 nm, but excitation wavelength was 245 nm in order to avoid the overlap of Rayleigh or Raman scattering with the monomer emission. Nitrogen bubbling increases the emission intensity by about 20% but does not modify the temperature dependence above the experimental error; therefore, air-equilibrated samples were employed. Excimer emission intensity was measured as the height of the corresponding peak at the wavelength of the maximum (325 nm in dilute Ch solution) and the same for monomer emission (285 nm). In some cases (i.e., Co8240), the spectral overlap may be very important, and corrections for overlap taken from ref 2 are applied.

Results and Discussion

Homopolymer. Fluorescence spectra of PMPS in dilute solution is mostly formed by excimer emission, but a shoulder corresponding to monomer emission can also be observed.²⁰ Its total fluorescence intensity always decreases on rising temperature.

In order to investigate the influence of polymer concentration and of molecular weight, we have studied log $I_{\rm E}$ versus 1/T for two fractions of PMPS and different concentrations, c. Table II summarizes the results of the transition temperature, $T_{\rm t}$, and total activation energy, $\Delta E_{\rm E}$, for those experiments.²¹

Both $T_{\rm t}$ and $\Delta E_{\rm E}$, above and below $T_{\rm t}$, are essentially independent of polymer concentration. Since c is always well below the critical value for coil overlap $(c^* = [\eta]^{-1} =$ 0.115 M for PMPS-3 and 0.25 M for PMPS-5), the transition has to be ascribed, as expected, to an intramolecular process.

There is a slight dependence of $\Delta E_{\rm E}$ and $T_{\rm t}$ on molecular weight (Table II). The direction of this dependence is in accordance with the observed quantitative differences between PMPS and its dimeric model compound 1,3-diphenyltetramethyldisiloxane (DS). (We use the $\log I$

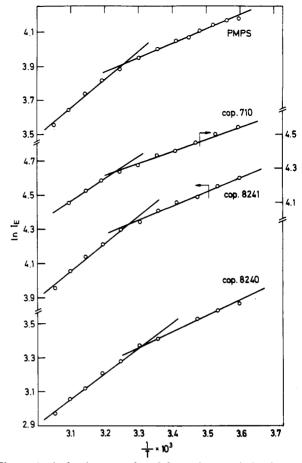


Figure 1. Arrhenius type plot of the excimer emission intensity for copolymers and the homopolymer in dilute Ch solution (4 × 10⁻⁴ M).

versus 1/T results given previously for DS² to now obtain the T_t and ΔE values which are given in Tables II and III).

Copolymers. Fluorescence spectra of MPS-DMS copolymers, having around 50% MPS (Co710 and Co8241) in cyclohexane dilute solution, show a temperature dependence analogous to that of the homopolymer. In all three cases (1) Arrhenius-type plots of $I_{\rm E}$ are double linear with positive slopes (Figure 1); (2) Arrhenius-type plots of the fluorescence ratio $(I_{\rm E}/I_{\rm M})$ give single lines with positive slopes (Figure 2), which correspond to the HTL; and (3) Arrhenius-type plots of $I_{\rm M}$ show double lines with positive slope at temperatures above T_t , and negative slope at temperatures below $T_{\rm t}$ (Figure 3).

This last result concerning $I_{\mathbf{M}}$ is in accordance with the observation of an isosbestic point. The isosbestic point appears in PMPS and in the copolymers with high MPS contents (see Figure 4 for Co8241). It also appears in the dimer DS, as we reported previously.2

Isosbestic points reveal the existence of an excited-state equilibrium¹² between excimer and monomer. The equilibrium is such that, on increasing temperature, $I_{\rm E}$ decreases but $I_{\rm M}$ increases, because of excimer dissociation to excited-state monomer. At temperatures above T_t , the isosbestic point disappears, and the excited-state equilibrium no longer holds. Above T_t , both I_E and I_M decrease on increasing T.

Isosbestic points are not observed in polymers like PS in the HTL, because usually excimer decay through radiative and nonradiative pathways compete with excimer dissociation.²² In such cases, excimer and monomer emissions do not correspond to equilibrium populations of excimer and excited-state monomer, and the high-temperature limit is not under thermodynamic control.

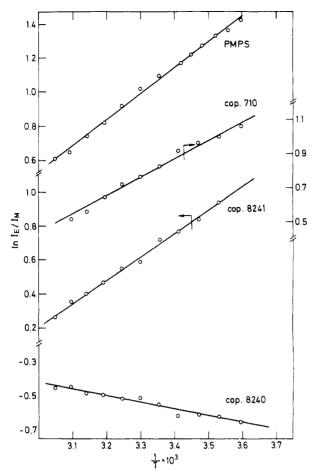


Figure 2. Arrhenius-type plot of the fluorescence ratio $(I_{\rm E}/I_{\rm M})$ for copolymers and PMPS in dilute Ch solution.

Scheme I

$$M + M^* \xrightarrow{K_{EM}} E^* \qquad T < T_{EM}$$

$$\downarrow K_{M} \qquad \downarrow K_{E} \qquad [M] \uparrow$$

Disiloxanes,² trisiloxanes,¹⁵ and even high molecular weight PMPS show isosbestic points. The reason can be the great dynamic flexibility of the siloxane structure. The torsional barriers for backbone rotation around Si–O bonds in siloxanes are much lower than those for rotation around C–C bonds in PS-like polymers.²³ In consequence, the formation of excimers from excited-state single monomer through rotation is faster in phenyl-containing siloxanes than it is in their vinyl counterparts (PS).²⁴ But, for the same reason, the siloxane excimers dissociation should also be faster than the dissociation of polystyrene-like excimers. A greater mobility in both senses, formation and dissociation of excimers, is natural for siloxanes.

Therefore, at temperatures below $T_{\rm t}$, siloxanes are under thermodynamic equilibrium in the excited state, and the Arrhenius-type plot of the fluorescence ratio yields the excimer binding enthalpy. At temperatures above $T_{\rm t}$, the isosbestic point disappears (Figure 4), $I_{\rm M}$ starts to decrease on raising $T_{\rm t}$, and $I_{\rm E}$ continues to decrease, but at a faster rate, because of a new mechanism of decay which starts to be operative at $T_{\rm t}$ (see changes of slopes at $T_{\rm t}$ on Figures 1 and 3). ²¹

It can be seen in Figure 4 (and in ref 2 and 15) that the $\lambda_{\rm E}$ of phenylsiloxanes becomes progressively blue-shifted as the temperature is raised above $T_{\rm t}$. Atactic PS,² on the other hand, does not give such a shift with temperature

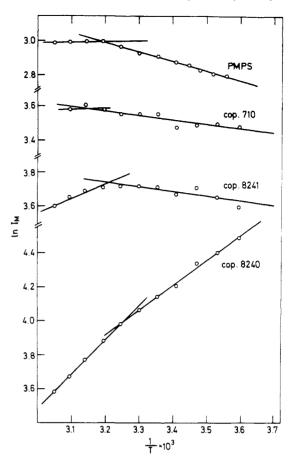


Figure 3. Arrhenius-type plot of the monomer emission intensity for copolymers and PMPS in dilute Ch solution. The breaking point for Co710 has been drawn taking into account the disappearance of the isosbestic point.

Scheme II

$$M + M^* \xrightarrow{K_{EM}[M]} E^* \xrightarrow{K'_{E}} [M] \uparrow$$

Scheme III

$$M + M^* \xrightarrow{K_{EM}[M]} E^* \qquad T < T_t$$

$$\downarrow K_M \qquad \downarrow K_E \qquad [M] \downarrow$$

Scheme IV

$$M + M^* \xrightarrow{K_{EM}[M]} E^* \qquad T > T$$

$$\downarrow K_M \qquad \downarrow K_E \qquad [M] \downarrow$$

(in the same conditions and with similar spectral overlap). Schemes I and II represent the situation (excited-state equilibrium below $T_{\rm t}$ disrupted by a new nonradiative mechanism, $k_{\rm E}$, above $T_{\rm t}$) for the high MPS content samples

Co8240, with a low MPS content (9.5%, that corresponds to about eight phenyl rings per macromolecule), shows a temperature dependence more similar to that of PS than to PMPS, referring to the sign of the slopes: (1) Arrhenius-type plot of $I_{\rm E}$ is double linear with positive slopes like in the other siloxane copolymers (Figure 1). The

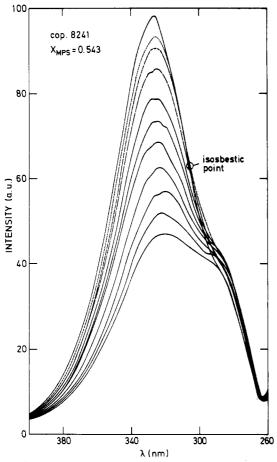


Figure 4. Temperature dependence of the emission spectrum for Co8241.

corresponding plot for PS shows a single line, but also with positive slope.² (2) Arrhenius-type plot for the fluorescence ratio (Figure 2) has a negative slope, like the one of PS² and in contrast to the other siloxanes. Both Co8240 and PS are in the LTL. (3) Arrhenius-type plot of $I_{\rm M}$ is formed by two intercepting lines, but both with positive slopes (Figure 3), contrary to the other siloxanes. The corresponding plot for PS² shows a single line with positive slope.

This copolymer is of very low chromophore concentration. Therefore, the bimolecular step $k_{EM}[M]$, which involves two chromophores, should be much slower and of a much smaller relative importance compared to the monomolecular decay, $k_{\rm M}$, than it is in the other copolymers. The rate is excimer formation is so slow that the system is like it is in the LTL and $I_{\rm E}/I_{\rm M}$ increases on raising T.

Since $k_{\rm M}$ is now competitive with excimer formation, $I_{\rm E}/I_{\rm M}$ does not correspond to a real excited-state equilibrium even below T_t. This is in accordance with the observation of no isosbestic point for this copolymer (Figure 5). Although there is a difference with respect to the other copolymers, the transition is also observed in Co8240 (Figures 1 and 3).

The situation with this low MPS content sample is represented in Schemes III and IV for temperatures below and above $T_{\rm t}$.

Nature of the Transition. Independently of whether a given siloxane sample is in the LTL or in the HTL, in all cases the transition is observed both in $I_{\rm M}$ and in $I_{\rm E}$. This is a characteristic of the siloxanes. The appearance of the transition depends on the particular structure of the chain and not on the relative importance of excimer formation.

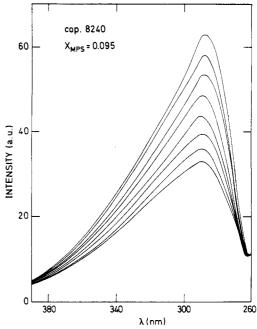


Figure 5. Temperature dependence of the emission spectrum

Table III Parameters Deduced from the Arrhenius-Type Plots for the Homopolymer PMPS; the Copolymers Co710, Co8241. and Co8240; and the Dimeric and Monomeric Model Compounds DS and MS, in Cyclohexane Dilute Solutiona

sample	$\Delta E_{ ext{EM}}$	T_{t}	$\Delta E_{\mathrm{E}}^{T < T_{\mathrm{t}}}$	$\Delta E_{\rm E}^{T>T_{\rm t}}$	$\Delta E_{\mathrm{M}}^{T < T_{\mathrm{t}}}$	$\Delta E_{\mathbf{M}}^{T>T_{\mathrm{t}}}$
PMPS	-3.0	32	-1.7	-3.3	1.1	-0.1
Co710	-2.2	37	-1.4	-2.6	0.5	0
Co8241	-2.8	33	-1.6	-3.2	0.5	-1.7
Co8240	0.8	30	-1.7	-3.0	-2.9	-4.0
DS	-3.4	27	-2.4	-4.6	0.9	-1.1
MS					-4.2	-4.2

^a T_t (transition temperature) in °C; $\Delta E_{\rm EM}$ and $\Delta E_{\rm E}$ in kcal/mol. Column 2 from I_E/I_M ; columns 6 and 7 from I_M .

The transition does not modify the excimer stability, as is deduced from the slopes of Figure 2. These slopes are related with the excimer binding enthalpy ($\Delta E_{\rm EM}$ in PMPS, Co710, and Co8241) and we can see that they are not substantially modified at T_t (Table III). The transition does not modify the activation energy for excimer formation. That is the physical meaning of the slope of Figure 2 for Co8240 ($\Delta E_{\rm EM}$ of Co8240 in Table III).

As previously mentioned, at the transition temperature, a mechanism for excimer nonradiative decay is triggered, whose rate constant modifies the temperature dependence of both $I_{\rm M}$ and $I_{\rm E}$ (in a compensating way). Such a mechanism activated at Tt should be a process involving a couple of neighboring phenyl rings, since the transition is not observed in the single-chromophore monomeric compound MS, but it is observed in the bichromophoric dimer DS as clearly as it is in the homopolymer or the copolymers.

The siloxanes are flexible with respect to torsion and with respect to bending of their Si-O-Si structure.²³ Very recently, Debolt and Mark²⁵ have suggested that, since the barrier for inversion in the Si-O-Si sequences is low, such inversion may be an important factor to consider in the interpretation of the temperature variation of the configurational properties of siloxane polymers. The idea is attractive, we think, not only for the configurational properties mentioned by Debolt and Mark, but also for the fluorescence spectra of excimer-forming polymers and

dimers such as the ones studied here. It is reasonable to think of Si-O-Si inversion as a process by which excimer nonradiative decay may take place.

Acknowledgment. This work was carried out under Grant GG85-0013 from CAICYT, Spain.

Registry No. DS, 56-33-7.

References and Notes

- (1) (a) Winnik, M. A. Photophysical and Photochemical Tools in Polymer Science: NATO ASI Series; D. Reidel: Dordrecht, 1986. (b) Rabek, J. F. Mechanisms of Phytophysical Processes and Photochemical Reactions in Polymers; Wiley: New York, 1987. (c) Phillips, D. Polymer Photophysics; Chapman and Hall: London, 1985. (d) Guillet, J. E. Polymer Photophysics and Photochemistry; Cambridge University Press: New York, 1985.
- (2) Salom, C.; Gomez-Anton, M. R.; Horta, A.; Hernández-Fuentes, I.; Piérola, I. F. Macromolecules 1987, 20, 1627.
- (3) Fox, R. B.; Price, T. R.; Cozzens, R. F.; McDonald, J. R. J. Chem. Phys. 1972, 57, 534.
- (4) David, C.; Piens, M.; Geuskens, G. Eur. Polym. J. 1972, 8, 1019
- (5) Ishii, T.; Handa, T.; Matsunaga, S. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 811.
- (6) Bokobza, L.; Monnerie, L. Polymer 1981, 22, 235
- Tazuke, S.; Ooky, H.; Sato, K. Macromolecules 1982, 15, 400.
- (8) Skilton, P. F.; Ghiggino, K. P. Polym. Photochem. 1984, 5, 179.

- (9) De Schryver, F. C.; Moens, L.; Van der Auweraer, M.; Boens, N.; Monnerie, L.; Bokobza, L. Macromolecules 1982, 15, 64.
- (10) De Schryver, F. C.; Demeyer, K.; Toppet, S. Macromolecules 1983, 16, 89.
- (11) Zachariasse, K. A.; Duveneck, G.; Busse, R. J. Am. Chem. Soc. 1984, 106, 1045
- (12) Goldenberg, M.; Emert, J.; Morawetz, H. J. Am. Chem. Soc. 1978, 100, 7171.
- (13) Ito, S.; Yamamoto, M.; Nishijima, Y. Bull. Chem. Soc. Jpn. 1981, 54, 35.
- (14) Aspler, J. S.; Guillet, J. E. Macromolecules 1979, 12, 1082.
 (15) Wu, S. K.; Jiang, Y. C.; Rabek, J. F. Polym. Bull. 1980, 3, 319.
 (16) (a) Piérola, I. F.; Radic, D.; Gargallo, L. J. Photochem. 1987,
 - 38, 375. (b) Helfand, E. in Ref 1a, p 151.
- Tsitsilianis, C. Polym. Bull. 1987, 18, 183.
- Tanabe, Y. J. Polym. Sci., Polym. Phys. Ed. 1985, 23, 601.
- (19) Llorente, M. A.; Piérola, I. F.; Saiz, E. Macromolecules 1985, 18, 2663.
- (20) Salóm, C.; Horta, A.; Hernández-Fuentes, I.; Piérola, I. Macromolecules 1987, 20, 696.
- (21) Kinetic parameters shown in Tables II and III have been obtained from the best fit of results. A single line and two lines with various distributions of points have been tried in every case
- (22) Holden, D. A.; Guillet, J. E. Developments in Polymer Photochemistry; Applied Science: Barking, 1980. (23) Grigoras, S.; Lane, T. H. J. Comput. Chem. 1987, 8, 84.
- (24) Rubio, A. M.; Freire, J. J.; Pierola, I. F.; Horta, A., unpublished results.
- (25) Debolt, L. C.; Mark, J. E. J. Polym. Sci., Polym. Phys. Ed. 1988, 26, 989,

Monolayer, Multilayers, and Wetting Film of Poly(phenylmethylsiloxane)

Steve Granick* and Daniel J. Kuzmenka

Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

Stephen J. Clarson[†] and J. A. Semlyen

Department of Chemistry, University of York, York YO1 5DD, U.K. Received August 2, 1988; Revised Manuscript Received September 27, 1988

ABSTRACT: Surface pressure π has been measured as a function of surface concentration for poly(phenylmethylsiloxane) liquids, $M_n = 1470$, 2240, 10560, and 19500, spread at the water-air interface at 22.8 °C. For the two fractions of least molecular weight, the surface pressure was independent of concentration at submonolayer coverages, reflecting phase equilibria between aggregated and gaseous molecules. For these fractions π rose abruptly at a concentration consistent with estimates of full monolayer coverage and the transition was smooth to multilayers and eventually to films of macroscopic thickness. However, the two fractions of highest molecular weight did not spread. A desorption, or drying, transition appeared to occur with increasing molecular weight.

Introduction

The desire to study two-dimensional systems motivates studies of insoluble monomolecular films at the water-air interface. Surface pressure π , the amount by which the liquid's surface tension is reduced by presence of film, is measured relatively easily and is analogous to the osmotic pressure characteristic of three-dimensional systems. Much interesting phase information has long been available concerning monolayers of small surfactant molecules (consisting of a polar head and a hydrocarbon tail) but less for amorphous, uncharged polymers because few synthetic polymers² spread to form insoluble monolayers at the water-air interface.

†Present address: Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, OH 45221.

Original studies with polymers³ emphasized dilute concentrations, where π depends on the density of molecules: the interest was to determine the molecular weight and the second virial coefficient. More recently, more attention was paid to a region of much higher concentrations, where surface pressure is found experimentally to rise as a power law in the surface concentration and to be independent of molecular weight; this transition region has been interpreted as a "semidilute" region of concentration in two dimensions, 4,5 although this interpretation has been questioned.² At high surface concentrations there begins a plateau region of relatively constant surface pressure, generally interpreted to reflect "collapse" of the monolayer to the three-dimensional state.

The study reported below concerns a polymer that has not been studied previously, poly(phenylmethylsiloxane). One purpose of the study was to obtain additional data